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Abstract

Mining for anomalies in graph structured datasets is an
important and challenging problem for many applica-
tions including security, health care, and social media.
In this paper, we propose a novel framework to localize
temporal anomalies in large evolving graphs with re-
duced false alarm rate. Specifically, we first introduce a
node-centric model based on Vector Autoregression to
analyze node behavior history in dynamic graphs. Then
we develop two community-centric models to reduce the
amount of false positive results by tracking the struc-
tural change and dynamics of graph communities. We
analyze the performance of our proposed anomaly local-
ization framework on several synthetic and real-world
data sets including Enron email network data, an en-
terprise network traffic data, and CNN public Facebook
page. All experimental results show the effectiveness
and consistency of our framework in localizing tempo-
ral anomalies with reduced false alarm rate.

1 Introduction

Time-evolving graphs often record dynamic transac-
tions among a set of entities, such as enterprise web
traffic, personal email communication, and online so-
cial network interactions [1]. Temporal anomalies are
defined as graph-based outliers present in one or more
instances of dynamic graphs. They are graph entities
with unusual behavior patterns hidden inside the dy-
namic graph structure. Localizing temporal anomalies
provides the basis to address several application-specific
tasks such as insider threat detection in enterprise net-
works and fraud detection in financial services [2].
Although some recent research has addressed the
problem of anomaly detection in dynamic graphs [3, 4],
these mostly focus on event detection, i.e. detecting
when a temporal anomaly occurs during a graph evolv-
ing process, and do not address the problem of local-
ization, i.e. identifying the specific nodes that are re-
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sponsible for the detected anomalous changes in graph
structure. In addition, because most recent work [5, 6]
leverages only node-centric models to detect temporal
anomalies, many non-anomalous nodes may be included
due to normal community-level changes, thus increas-
ing the false alarm rate. For example, in an enterprise
network, group membership changes are often normal
behavior during cross-team collaboration. In a social
network, a sudden increase in a user’s communication
should not be regarded as anomalous if most of his
friends are actively talking about a sudden breaking
news story. Motivated by the above two challenges,
we propose a new framework for localizing temporal
anomalies with reduced false alarm rate. The main con-
tributions of our work are summarized as follows:

e We propose a novel method based on a Vector
Autoregression (VAR) model to localize temporal
anomalies in dynamic graphs. Instead of modelling
the entire graph structure at each timestamp, our
algorithm localizes anomalous nodes by tracking
the evolution of a set of node properties and their
interactions across the whole timeline.

We design a new anomaly localization framework
with reduced false alarm rate by leveraging both
a node-centric model and a community-centric
model. Using dynamic community paths, we can
accurately recognize normal community-level tran-
sitions and exclude many false positive results.

We evaluate the performance of our framework on
several synthetic and real-world datasets covering
different application areas including Enron email
network data (personal communication), an enter-
prise network traffic data, and CNN public Face-
book page (social media). All our experiments
show the effectiveness and consistency of our frame-
work in localizing temporal anomalies with reduced
false alarm rate.

2 Related Work

Although there is much work on detecting temporal
anomalies in dynamic graphs, these methods [7, 8] are
mostly designed only for detecting whether or not a
graph structure change is anomalous. Few of them focus



on the problem of anomaly localization, i.e. identifying
the specific graph entities that contribute to the de-
tected anomalous change in graph structure. Kumar
et al [6] propose a commute-time-based anomaly de-
tection method to localize anomalous edges by track-
ing the changes in graph structure and edge weights.
Their algorithm can only localize anomalies with respect
to the graph transition between two neighboring snap-
shots. In dynamic graphs, many temporal anomalies
are hidden inside the evolutionary path of graph struc-
ture changes, which can only be detected with a com-
plete behavior model along the whole timeline. Rossi
et al. [5] builds a dynamic behavior mix-membership
model to analyze graph evolutionary patterns and local-
ize anomaly nodes. However, their method only focuses
on a node-centric model and neglects the community
information of graph entities. In this paper, we propose
a novel anomaly localization framework with a dynamic
behavior model leveraging both node-centric properties
and community-centric properties.

Community-based anomaly detection has attracted
much attention in recent years. Sun et al. [9] propose a
generative model to detect evolutionary communities in
heterogeneous networks. However, their work assumes
that the communities in adjacent timestamps should be
consistent, which ignores those dynamic events where
the community size changes significantly along the evo-
lutionary path. Chen et al. [8] develop a parameter-
free algorithm to uncover six types of community-based
anomalies (grown, shrunken, merged, split, born, and
vanished) in evolutionary networks. Gupta et al. [10]
introduce the definition of evolutionary community out-
liers and propose an optimization framework to mini-
mize community matching error across snapshots. How-
ever, these methods only focus on using community
properties to identify group-level anomalies in dynamic
graphs, and neglect their relationship with node-level
anomalies. In this paper, we leverage the community
properties of graph entities in two directions. First, we
develop a community-centric model to identify group-
level anomalies among dynamic graph patterns. Second,
we combine the node-centric model and community-
centric model into an integrated algorithm to reduce the
false alarm rate of our anomaly localization framework.

3 Anomaly Localization Framework

Given the graph representation of network data, our
goal is to model the dynamic change of graph structure
and localize temporal anomalies among the nodes. Fig-
ure 1 shows the general idea of our proposed framework
with three graph models. History-based Node Model
is a node-centric model. It uses centrality features
to describe the behavior history of a single node in
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Figure 1: Our Framework for Anomaly Localization

the evolving graph. Both the Community-based Node
Model and Evolutionary Community Path Model are
community-centric models. The former emphasizes
the community information of a single node at a fixed
time slot, and the latter tracks the dynamics of graph
communities along the whole timeline.

In this section, we first describe the node-centric
model based on Vector Autoregression. Then we
introduce two community-centric models and their
usage on reducing the false alarm rate of anomaly
localization. Finally, we combine these three models
into an integrated framework.

3.1 Node-Centric Model Given a temporal se-
quence of graphs G = {G¢,t = 1,..., T}, each snapshot
G, is a weighted undirected graph which aggregates all
the network connections within the interval [t —1,¢]. In
a graph snapshot, Gy = (V. E;), V = {v1,...,v,} is a
fixed node set and FE; is a set of weighted edges during
the time slot [t — 1,¢].

Feature Matrix. We describe the node’s observed
behavior with a set of representative graph features.
In general, we represent each graph snapshot G; as a
feature matrix:
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where g;;+ denotes the ith feature value of the jth node
at time t. m is the number of selected features, and
n is the number of nodes in this snapshot. Based
on previous work [5, 11], we use six graph features
to describe the clustering and centrality properties of
each node: total degree, clustering coefficient, closeness,
eigenvector, betweenness, and PageRank. Therefore,
the value of m is 6 in this paper.

History-based Node Model. In order to represent




the behavior history of each node in the dynamic graphs,
we use the Vector Autoregression (VAR) model [12] in
time series analysis. Because the information of the ith
node is stored in the ith column of the feature matrix
F;, we describe the evolution of the ith node’s features
as follows:

(3.1)
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where ¢ is a m x 1 vector of constants and e; is a m *x 1
vector of error terms. p is the lag order that can be
determined automatically by the VAR model. A; is
a m * m matrix describing the node feature transition
between time ¢t and t — j:
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In A;, we can find that our model not only describes
the relationship between the same features at different
timestamps, e.g. aj;, but also includes the relation-

ship across different features, e.g. a{’z, which makes our
model more powerful than the ordinary ARMA model
on tracking multiple graph features in time-evolving
graphs.

In the last step, we define the outlier score of each
node in the history-based node model as the differ-
ence between the predicted feature vector and observed
feature vector. To be specific, we use Equation 3.1
to predict the graph feature vector of the ith node

at t+ 1 as F’t(fl.

Ft(i)l to the observed Ft(i)l using the Euclidean norm
and get the History-based Outlier Score as O}lb (t41) =

IED, = 2.

Then we compare the predicted

3.2 Community-Centric Models In order to
localize temporal anomalies in dynamic graphs, we not
only consider the behavior history of a single node,
but refer to its community information as well. In
this paper, we propose two community-centric models:
Community-based Node Model and Evolutionary
Community Path Model. The former emphasizes the
community information of a single node at a fixed
time slot, and the latter tracks the structural change
and dynamics of graph communities along the whole
timeline.

3.2.1 Evolutionary Community Path Model
Similar with the history-based node model, we define
a temporal sequence of graphs G = {G4,t = 1,...,T},

where the snapshot G; = {V, E;} is a weighted undi-
rected graph which aggregates all the network connec-
tions within the interval [t — 1,¢].

Community Detection. Our objective is to do a
graph partition within a graph snapshot G; so that
edges between groups have a very low weight and edges
within one group have a high weight. In this paper,
we use a fast greedy algorithm [13] to detect non-
overlapping communities based on the greedy optimiza-
tion of modularity. Although this fast greedy algorithm
can only give us a locally optimal partition of the snap-
shot, it is very efficient and runs in essentially linear
time on some real-world networks. Considering the huge
amount of node interaction data and the requirement of
real-time analysis, this fast greedy algorithm is the most
suitable algorithm for our framework.

Evolutionary Community Path. At this step, we
connect communities detected at adjacent time stamps
together if the number of their common nodes is above a
certain threshold. Suppose we find a set of communities
C, ={Ci1,C2,...,Ct 4} in graph snapshot G, and their
predecessors C;_1 = {C(4—1),1, Ct—1),2, s C(¢—1),2/ } In
graph snapshot G;_;. To match adjacent subgroups to-
gether between C; and its predecessors C;_1, the most
widely-adopted method is to use Jaccard coefficient [14].
However, this classic definition can only be used for
identifying state transition of two communities of sim-
ilar size. During the evolution of graph communities,
we still need to consider other dynamic events where
community size changes significantly, such as forming,
dissolving, expanding, contracting, splitting, and merg-
ing. Although the communities involved in those events
should be regarded as well-connected in our framework,
the Jaccard coefficient may often report them to be low-
similarity communities. In order to deal with this prob-
lem, we propose another definition to evaluate commu-
nity similarity in all possible events:

1Cta N Cle—1)
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With this new definition, communities will be matched
if the similarity value exceeds the threshold 6 € [0,1].
When the size of two adjacent communities does not
vary much, this definition keeps the property of the Jac-
card coefficient; When dynamic evolution events occur
where the community size changes significantly, this def-
inition can match the communities together because of
the high proportion of common nodes in the smaller
community.

Furthermore, we also add the concept of gap inter-
val [15] into our model when building the evolutionary
community paths. For a community C} ,, we not only
consider the community set C;_; detected at the prior
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Figure 2: Evolutionary Community Paths in Enron
Email Dataset
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time stamp t—1, but also include all the community sets
{Cy-1,Ci_2,Ci_4} detected within the last g steps into
consideration. In some dynamic networks, node behav-
ior is highly dynamic. Allowing a reasonable number of
gap intervals helps us to detect more evolutionary com-
munity paths. The parameter selection of the similarity
threshold € and gap interval will be discussed in the ex-
periment section (Section 4).

After connecting those detected communities at dif-
ferent timestamps together, we get a new graph showing
the evolution of communities along the whole timeline.
In this graph, each node represents a detected commu-
nity. As the last step, we find all the connected compo-
nents in this graph and define them as the evolutionary
community paths in this network. Figure 2 shows some
examples of the evolutionary community paths detected
in Enron email dataset from Jun. 1, 2001 to Aug. 1,
2001. The number inside each node represents the size
of the detected communities, i.e. the number of people
in those communities. Each connected component in
this graph represents a detected evolutionary commu-
nity path, which is shown in different colors.

Community Path Outliers. Given an evolution-
ary community path in the dynamic network, we want
to check if it includes anomalous activity at a cer-
tain stamp. In this step, we leverage the definition
of the Feature Matrix in the node-centric model and
extend it to the community level. Suppose there are
w nodes included in the community path y at time
stamp t, we define the ith feature value of path y at

time ¢ as gyt = Z Gij ¢, where g;;; denotes the ith
feature value of nojde j at time ¢t. In summary, for
each community path y at time ¢, we have a vector
[G1y.ts G2y b <o Gt - my.t] . indicating its m feature
values. Then, we use the VAR model to learn how the
activities in community path y changes over time.

(3.3)

F" = c+ BiFY, 4 By FY) 4+ .. BiF Y, 4. A B, FY) te,

where B; is a m * m matrix describing the community
path transition between time ¢ and ¢ — j. As the last
step, we define the outlier score of each community
path at time stamp ¢ as the difference between the
predicted feature vector and the observed feature vector.
Similar with the method in the history-based node

model, we use Equation 3.3 to predict the feature vector

)

of community path y at t + 1 as F(J 71 and calculate the
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3.2.2 Community-based Node Model Different
from the evolutionary community path model that
leverages the behavior history of communities in the
dynamic network, the community-based node model is
a static graph model which compares the node with its
involved community at a fixed time stamp.

Following the definitions in the evolutionary
community path model, at each time stamp ¢, we
do a graph partition on snapshot G; and get a set
of communities C; = {C;1,C2,...,Ciy}. For each
detected community r at time ¢, we summarize its

feature vector as F( N = agmr,t]Ty

[ngtaQQT‘ ty - 'ag’ir,ta

where g+ = E Z gi;+ indicating the average feature
=1
of its w nodes. JSuppose node z is one of the nodes
in community r at time ¢ and its feature vector is
Ft(z) = [glz,t,ggzyt,...,gmzt}T We define the outlier
score of each node in the community-based node model
as the difference between its feature vector and the
average feature vector of its community. At last, we get

the Community-based Outlier as O, , = HF(T) t(z)H.

3.3 Integrated Framework Previously, we defined
three kinds of outlier scores in different graph mod-
els: History-based Outlier Score (Opp), Community
Path Outlier Score (O.p) and Community-based Out-
lier Score (O). Now, we combine these three defini-
tions together into an integrated framework.

In a temporal sequence of graphs G = {Gi,t =
1,...,T}, suppose node z is a member of community C'
at time ¢t and community C is included in the evolu-
tionary path y.! We judge node z in the following four
conditions:

1) If Ohbt < top K%, node x is considered normal
at time t. In other words, if the behavior of node
x follows its history pattern, we will consider it as
a normal node at time ¢.

TIf node z is not a member of any community at time ¢, we

will consider it as a normal node at time t¢.



2) If O}(L‘z?t > top K% and Ogg?t > top K%, node
x is considered anomalous at time ¢. In other
words, if the behavior of node z does not follow
its history pattern and the community path it
belongs to shows anomalous activities, we consider

it anomalous at time ¢.

3) If O};), > top K% and O, < top K% and 0%, <
top K%, node x is considered normal at time ¢.
In this situation, although node x does not follow
its own history pattern, its behavior is actually
following the pattern of its community at time t.
Therefore, we consider node x as a normal node at
time t.

> top K% and oW

4) It O}, ¥, < top K% and
O(I)

oy = top K%, node x is considered anomalous
at time ¢. In this situation, the behavior of node
x follows neither the pattern of its own history
nor the pattern of the community it belongs to.
Therefore, we consider node z anomalous at time
t.

In our proposed framework, we can reduce the false
alarm rate by the condition 3). When we find that the
target node does not follow its own history behavior
pattern (O;f;)t > top K%), we continue to examine its
current comrﬁunity information and the related commu-
nity path. If the current state of its involved community
path is normal (Ogg?t < top K%) and the behavior of

node z follows its community pattern (0%, < top K%),
we will consider node x as a normal node at time ¢. A
real world example of this situation can be found in the
email connections of an employee who is just starting a
cross-team collaboration. Although the email network
of this person may show a large change, he is following
the normal community behavior pattern, which makes
his behavior less anomalous.

4 Experimental Analysis

Because real world data sets can only provide anecdotal
evidence of anomalies, we first create a synthetic data
set to quantitatively analyze the effectiveness of our
proposed anomaly localization framework. Then we run
our framework on three real world data sets. Some
proven real world examples are also used to evaluate the
performance of our framework in reducing false alarm
rates.

4.1 Synthetic Data To create a dynamic graph ex-
ample, we first generate a random graph with 1000
nodes and 4000 edges. We also construct an adja-
cency matrix S for this graph where S[i, j] represents

the weight of the edge between node i and node j. Ad-
ditionally, we build a random matrix R € R1000%1000
where each entry R(i,7) in matrix R is given by:
(4.4)
R, j) = { 0, with probability p = 0.999
’ 2% u(i,j), with probability p = 0.001

where u(i,7) is a random number generated uniformly
between -1 and 1. Then we create a graph sequence
G = {Gt,t =12,.. 25} where G; = Gi_l—l—(Ri—i-Rg)/Z,
Gy = S and R; represents the random matrix generated
at time 7 separately.

Pattern Injection. Suppose {Ca0.1,C20.2;---sC20.4}
are the detected x communities in graph Gog. We inject
three types of patterns into the graph snapshot Gag:

e Normal Pattern: Select a tuple of random nodes

{(vi,v)|v; € Co0,4,v; € Coop,a # b} and swap
their positions in graph Gag.
In this situation, although the changed node does
not follow its own history behavior pattern at time
t = 20, its current community path is normal and
its behavior matches the community pattern at
time ¢t = 20. Therefore, this injection pattern is
normal, which is related to condition 3) in section
3.3.

e Anomalous Pattern I: Select a tuple of random

nodes {(v;,v;)|vi € Ca0,4,v; € Coop,a # b} and
swap their positions in graph Gog. Then, create
a star-like connection pattern within Gyy. Taking
node v; as an example, increase its edge weights to
all other 15 nodes in Gy by 1.
In this situation, the behavior pattern of the
changed node does not follow its community pat-
tern at time ¢ = 20. In addition, because the
star-like pattern is applied to the whole graph Gsg,
its influence on the community path is very small.
Therefore, this anomaly is related to condition 4)
in section 3.3.

e Anomalous Pattern II: Select a tuple of random
nodes {(v;,v;)|v; € Co0,4,v; € Coop,a # b} and
swap their positions in graph Ggg. Then, create
a star-like connection pattern within a node’s own
community. Taking node v; as an example, increase
its edge weights to all other 15 nodes in Cy 4 by 1.
In this situation, because the star-like pattern
is applied within the community of the changed
node, the community path it belongs to is heavily
influenced. Therefore, this anomaly is related to
condition 2) in section 3.3.

We inject three types of patterns at time ¢t = 20 and
repeat each pattern injection five times. Lastly, we get



1.0

o e
o ©

True Positive Rate
o
»

o
N

HIB
— INF
-- SCM

R 02 04 06 08 1.0
False Positive Rate

Figure 3: ROC curves comparing different anomaly
localization models

20 anomalous nodes, 10 changed normal nodes, and 970
unchanged nodes in graph Gayp.

Parameter Selection. In our proposed anomaly lo-
calization framework, we need to give two parameters
to build the evolutionary community path: similarity
threshold 6 € [0,1] and allowed gap interval g. In
our experiments on a synthetic data set, we set the
threshold value to be 0.45, which can provide a rea-
sonable compromise between community matching ac-
curacy and identifying the optimal number of commu-
nity paths. Also, because the graph sequence we create
is relatively stable at each time stamp, we do not need
to add gap intervals to build more community paths.
Therefore, we set gap interval ¢ = 0. In addition, we
set the maximum value of the lag order in our time se-
ries model as 3 and use the VAR model to determine its
optimal value automatically.

Result Evaluation. We run our anomaly localiza-
tion framework on synthetic data and evaluate its effec-
tiveness by contrasting the detected anomalous nodes
against the ground truth set of anomalous nodes we in-
jected in Gog. In addition, we compare the performance
of our integrated framework (INF) against the history-
based node model (HIB) and a static-community al-
gorithm (SCM). HIB only uses the history-based node
model to localize anomaly without taking any commu-
nity information into account. And SCM leverages both
the history-based node model and the community-based
node model, but the community information it uses is
from a static snapshot without dynamic properties of
the evolutionary community path. The ROC curves for
these three algorithms are shown in Figure 3. The area
under the ROC curves for INF, HIB and SCM are re-
spectively given by 0.95, 0.87 and 0.93. We find that our
integrated framework performs the best among these
three algorithms. Because HIB neglects the community
information of a graph node, it may mistakenly consider

our injected Normal Pattern as an anomaly, which will
increase the false positive rate of its localization result.
For SCM, because it does not consider dynamic prop-
erties in the evolutionary community path, it may fail
to detect our injected Anomalous Pattern II, which will
increase the false negative rate of its localization result.
We also show some detailed graph feature analysis of our
injected patterns in Figure 4 and Figure 5. The y-axis
of these figures represents the graph feature distribu-
tion at each point. Each distinct color represents one
graph feature (Black: degree, Blue: clustering coeffi-
cient, Green: betweenness, Yellow: closeness, Magenta:
eigenvector, Red: PageRank) and the length represents
its feature value, which is normalized by the sum of the
total features. In Figure 4.a and Figure 5.a, we find

graph features changing at time ¢ = 20 in both node
A and node B. However, in Figure 4.b and Figure 5.b,
node A matches the features of its community members
at time ¢ = 20, while node B shows obvious different
graph features from its community members.

T13 T14 T15 T16 T17 T18 T19 T21 T22
(a) Node A from T13 to (b) Community members
T22 of node A at 720

Figure 4: An Example Node with Normal Pattern

T13 T14 T15 T16 T17 T18 T19[T20]T21 T22

(a) Node B from T13 to (b) Community members
T22 of node A at 720

Figure 5: An Example Node with Anomalous Pattern I

4.2 Enron Email Network Data The Enron email
network data is a graph structured data set based on
emails exchanged among employees of the Enron Corpo-
ration from 1998 to 2002. The graph data set includes
all the email records of the year 2001 with a total of
54,214 nodes and approximately 1 million edges. We ag-



gregate the data on a weekly basis, leading to 53 weekly
graph snapshots, and we use our proposed framework to
localize anomalous nodes. For parameter selection, we
use the same values from our experiments on synthetic
data: similarity threshold 6 = 0.45, gap interval g = 0.
Furthermore, because we cannot analyze node behavior
without enough user communication records, we only
focus on the top 1000 nodes that have the most email
communication.

The Enron scandal was revealed on October 16,
2001 when Enron reported a 638-million-dollar third
quarter loss. Before the scandal broke, there were
numerous internal email records and public announce-
ments that showed unusual behavior within Enron Cor-
poration [16]. In this experiment, we use our proposed
framework to localize Enron employees with unusual
email communication patterns.

First, we localize Rosalie Fleming, the assistant to
Kenneth Lay, as an anomaly during the time Kenneth
Lay returned as chief executive between Aug. 2001 and
Sept. 2001. Next, we detect an anomalous commu-
nication pattern for Janette Elbertson, the assistant of
Mark Haedicke (the Managing Director of Enron Corp.),
in the middle of August 2001. With further investiga-
tion, we find that during this time, someone sent an
anonymous warning stating that questionable account-
ing practices would lead the company to implode in a
wave of accounting scandals. This warning attracted
much attention from Enron executives. Figure 6 and
Figure 7 show the graph feature analysis of Rosalie
Fleming and Janette Elbertson respectively. In Fig-
ure 6, we can easily see anomalous graph feature changes
for Rosalie in week 37 (Sept. 17). In Figure 7, anoma-
lies are localized for week 33 (Aug. 20) in the behavior
history of Janette.

Additionally, our framework successfully reduces
false alarms using the community-centric models. For
example, Danny McCarty, the Chief Commercial Officer
of Enron’s Pipeline Group, shows an unusual inactive
email communication pattern at the end of June. 2001.
However, by analyzing his dynamic community infor-
mation, we find that his previous collaborators, Stan-
ley Horton and Drew Fossum, show a similar behavior
pattern at that time. Stanley Horton is the chairman
and chief executive officer of Enron Transportation Ser-
vices Company and Drew Fossum is the Diretor of En-
ron Louisiana Transportation Company. Both are in
the same division as Danny McCarty, and they collabo-
rate extensively on energy projects [8]. Figure 8 shows
the behavior analysis of these three people from May,
2001 to July 2001. We find that they all have similar
graph feature changes in week 24 (June 18). Since the
yellow bar represents closeness centrality, these feature

changes indicate that they all become less active in their
email communication at that time. It is very likely due
to a normal event in their division, such as an off-site
meeting. In summary, our framework not only localizes
related people of the Enron scandal with high accuracy,
but also successfully reduces false alarm cases with dy-
namic community information.

T33 T34 T35 T36 137|738 T39

—_—

(a) Rosalie Fleming from (b) Community members
T33 to T'39 of Rosalie Fleming at 737

Figure 6: Graph Feature Analysis of Rosalie Fleming

T29 T30 T31 T32|T33|T34 T35

(a) Janette Elbertson from (b) Community members
T29 to T35 of Janette Elbertson at 7'33

Figure 7: Graph Feature Analysis of Janette Elbertson

T20 T21 T22 T23 T25

T20 T21 T22 T23 | T24 | T25

(b) Drew Fossum

(c) Stanley Horton

(a) Danny McCarty

Figure 8: Reduced False Alarms in Enron Email

4.3 Enterprise Network Traffic Data The enter-
prise network traffic data consists of user-to-server ac-
cess traffic records from Jan. 1, 2014 to Jul. 13, 2014.
This dataset is made available by Pivotal Software Inc.
It is a bipartite graph with 148,765 source IPs (users),
135,457 destination IPs (servers), and 34,142,946 user-
to-server connections. In the data preprocessing step,
we first aggregate the graph data on a daily basis to get



a bipartite graph snapshot Gg:. Then we do a stan-
dard one-mode projection of Gp¢, in the form of an
undirected graph Gp; = (V, Ep), where source v; and
v; are connected if and only if they share at least one
common destination [17]. Finally, we get a temporal
sequence of graphs G = {G;,t = 1,...,192}, where G;
is a source-based view of the original bipartite graph at
time ¢. Then we run our proposed framework on the
temporal graph sequence G to localize anomalous users
in the enterprise network. We use the same parameter
values from our experiments on synthetic data: similar-
ity threshold 8 = 0.45, gap interval g = 0.

Figure 9a shows an example of the detected anoma-
lous users Vi in the enterprise network traffic data. In
each of the two figures, the x-axis represents the timeline
and the y-axis represents the servers that V; has con-
nections with. The block (73,.S;) in the figure denotes
the number of connections from Vj to server S; at time
T;. The darker the block color is, the more connections
it includes. Among the two figures, the user history
pattern summarizes the previous connections from V;
to the listed servers, and the community pattern sum-
marizes the previous connections from all the users in
the same community as Vi to the listed servers. We
find that, for both patterns, there are unusual new con-
nections to servers S74965 and 5213822 at time 724 in
V1’s behavior. However, in its community, no member
other than V; connects to these two servers. It is highly
possible that the detected user V; is downloading in-
formation that he should not access. Furthermore, we
show an example of reduced false alarms in Figure 9b.
We find that although there is an unusual increase in
connections from V5 to server S147959 at time 723, it
is normal for the community members of V5 to have
many connections to server $147959. Therefore, user
V5 is considered normal at time 723 in our framework.
This is an example of network communication for an
employee who has just joined a new team project.

4.4 Facebook Data The data we use is crawled from
Facebook public pages by our SINCERE system?. SIN-
CERE is a diversified search engine based on user so-
cial informatics and stores user interaction data of more
than 1,800 Facebook public pages. We use CNN’s public
Facebook page, one of the largest newsgroups on Face-
book, as our data set and collect all its information,
including the content of comments, user-like informa-
tion, and their time stamps. In total, we collect data
from CNN’s public Facebook page from Apr. 1, 2011 to
Apr. 1, 2012, including 852,237 comments and 988,235
likes. Then we divide the data into a temporal sequence
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Figure 9: Example Users in the Enterprise Network

of graph snapshots by day G = {Gyt = 1,...,N},
where G; aggregates all the user-like information [18]
within the interval [t — 1,#]. In the user-like graph
Gy = (Wi, Ey), nodes V; stand for the users who liked a
comment or whose comments were liked by others dur-
ing the time slot [t — 1,¢]. Edges E; stand for the like
connections between those users. In summary, we get
366 user-like graph snapshots with a total of 173,481
nodes and 988,235 connections. Then we run our pro-
posed framework on the temporal graph sequence G to
localize anomalous users in the Facebook data. For the
similarity threshold, we use the same value from our ex-
periments on synthetic data, § = 0.45. Considering the
dynamics and periodicity of online user behavior, we set
the gap interval as one week, i.e. g = 7.

We discover several interesting anomalies in the
Facebook data set. For instance, we detect a Face-
book user dee.v.bee.12 (UserID=805330523) who shows
anomalous behavior on the CNN Facebook page. This
user’s information is then retrieved from Facebook. The
example messages we show below are those cached in
our SINCERE system. dee.v.bee.12 is one of the top
anomalies around Jan. 20, 2012. During that time, he
posted many spam messages supporting Ron Paul, a
former American politician, on CNN’s public page>:

RON PAUL! RON PAUL! RON PAUL! RON
PAUL! RON PAUL! RON PAUL! RON PAUL!

Shttps://www.facebook.com/cnn/posts/10150553600681509



RON PAUL! RON PAUL! RON PAUL! RON...

In addition, we find this user spreads the same message
repeatedly in four different posts around Feb. 02, 2012,
when he is also ranked as one of the top anomalies in
our framework. The message he sent repeatedly is as
follows:

there is vote fraud in nevada. we demand a re
vote, on paper ballots counted in public and no
votes shall be taken out of public sight! YOU
ARE STEALING THE PEOPLES VOICE!

Our framework also successfully reduces false alarms by
leveraging the community information of online user
behavior. For example, we find the Facebook user
Timothy (UserID: 100000023776257) showing unusually
increased communication on Jan. 20, 2012 based on
his own history behavior pattern. However, in his
dynamic community pattern, we find that he is having
a discussion with a group of active users about Occupy
Wall Street in a CNN post? during that time. In
summary, our framework successfully localizes malicious
online users by digging into their history behavior
and social patterns, which offers a new solution to
detect adaptive online attackers who attempt to build
legitimate social links instead of fake accounts to avoid
detection.

5 Conclusions

In this paper, we propose a new framework to localize
temporal anomalies in large evolving graphs with
reduced false alarm rate. Our framework consists of
three graph models with different emphasis on dynamic
graph structure. The History-based Node Model is
a node centric model that describes the behavior
history of a single node in dynamic graphs. Both the
Community-based Node Model and the Evolutionary
Community Path Model are community-centric models.
The former emphasizes the community information of
a single node at a fixed time slot, and the latter tracks
the dynamics of graph communities along the whole
timeline. Our experimental results on synthetic and
real world data sets show our proposed framework ef-
fectively and consistently localizes temporal anomalies
in large evolving graphs with reduced false alarm rate.
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